Fleurianne Bertrand

University of Twente
Mathematics of Computational Science

Publications (peer-reviewed)

[1] L. Alzaben, FB, and D. Boffi. “On the Spectrum of an Operator Associated with Least-Squares Finite Elements for Linear Elasticity”. Computational Methods in Applied Mathematics (2022).
[2] FB and D. Boffi. “Least-squares formulations for eigenvalue problems associated with linear elasticity”.
Computers and Mathematics with Applications (2021).
[3] FB and D. Boffi. “First order least-squares formulations for eigenvalue problems”. IMA Journal of Nu- merical Analysis (2021).
[4] FB, D. Boffi, and G. G. de Diego. “Convergence analysis of the scaled boundary finite element method for the Laplace equation”. Advances in computational mathematics 47 (2021), pp. 17–34.
[5] FB, L. Demkowicz, and J. Gopalakrishnan. “Recent Advances in Least-Squares and Discontinuous Petrov Galerkin Finite Element Methods”. Computers and Mathematics with Applications 95 (2021).
[6] FB, A. Ern, and F. Radu. “Robust and reliable finite element methods in poromechanics”. Computers and Mathematics with Applications 91 (2021).
[7] FB, B. Kober, M. Moldenhauer, and G. Starke. “Weakly symmetric stress equilibration and a posteriori error estimation for linear elasticity”. Numerical Methods for Partial Differential Equations 37.4 (2021), pp. 2783–2802.
[8] FB and E. Pirch. “Least-squares finite element method for a meso-scale model of the spread of covid-19”.
Computation 9.2 (2021), pp. 1–22.
[9] FB and G. Starke. “A posteriori error estimates by weakly symmetric stress reconstruction for the Biot problem”. Computers and Mathematics with Applications 91 (2021), pp. 3–16.
[10] FB, D. Boffi, and R. Ma. “An adaptive finite element scheme for the Hellinger-Reissner elasticity mixed eigenvalue problem”. Computational Methods in Applied Mathematics 21 (2020), pp. 501–512.
[11] FB, D. Boffi, and R. Stenberg. “Asymptotically Exact A Posteriori Error Analysis for the Mixed Laplace Eigenvalue Problem”. Computational Methods in Applied Mathematics 20.2 (2020), pp. 215–225.
[12] FB, M. Moldenhauer, and G. Starke. “Weakly symmetric stress equilibration for hyperelastic material models”. GAMM Mitteilungen 43.2 (2020).
[13] FB, Z. Cai, and E. Park. “Least-Squares Methods for Elasticity and Stokes Equations with Weakly Imposed Symmetry”. Computational Methods in Applied Mathematics 19.3 (2019), pp. 415–430.
[14] FB, L. Demkowicz, J. Gopalakrishnan, and N. Heuer. “Recent Advances in Least-Squares and Discon- tinuous Petrov-Galerkin Finite Element Methods”. Computational Methods in Applied Mathematics 19.3 (2019).
[15] FB, M. Moldenhauer, and G. Starke. “A Posteriori Error Estimation for Planar Linear Elasticity by Stress Reconstruction”. Computational Methods in Applied Mathematics 19.3 (2019), pp. 663–679.
[16] FB. “First-order system least-squares for interface problems”. SIAM Journal on Numerical Analysis 56.3 (2018), pp. 1711–1730.
[17] FB and G. Starke. “Parametric Raviart-Thomas elements for mixed methods on domains with curved surfaces”. SIAM Journal on Numerical Analysis 54.6 (2016), pp. 3648–3667.
[18] FB, S. Münzenmaier, and G. Starke. “First-order system least squares on curved boundaries: Higher-order Raviart-Thomas elements”. SIAM Journal on Numerical Analysis 52.6 (2014), pp. 3165–3180.
[19] FB, S. Münzenmaier, and G. Starke. “First-order system least squares on curved boundaries: Lowest-order Raviart-Thomas elements”. SIAM Journal on Numerical Analysis 52.2 (2014), pp. 880–894.

Proceedings

[1] L. Alzaben, FB, and D. Boffi. “Computation of Eigenvalues in Linear Elasticity with Least-Squares Finite Elements: Dealing with the Mixed System”. 14th WCCM-ECCOMAS Congress. CIMNE, 2021.
[2] FB. “A Decomposition of the Raviart-Thomas Finite Element into a Scalar and an Orientation-Preserving Part”. 14th WCCM-ECCOMAS Congress. CIMNE, 2021.
[3] FB. “Phase field method for quasi-static brittle fracture: an adaptive algorithm based on the dual variable”.
PAMM 21.1 (2021).
[4] FB, D. Boffi, J. Gedicke, and A. Khan. “Some Remarks on the a Posteriori Error Analysis of the Mixed Laplace Eigenvalue Problem”. 14th WCCM-ECCOMAS Congress. CIMNE, 2021.
[5] FB, L. Lambers, and T. Ricken. “Least Squares Finite Element Method for Hepatic Sinusoidal Blood Flow”.
PAMM 20.1 (2021).
[6] FB and H. Schneider. “Least-Squares Methods for Linear Elasticity: Refined Error Estimates”. 14th WCCM- ECCOMAS Congress. CIMNE, 2021.
[7] FB and D. Boffi. “A counterexample for the inf-sup stability of the RT 0 − P 1 ⊂ L2(Ω) × H1(Ω) finite
element combination for the mixed Poisson equation”. PAMM 19.1 (2019).
[8] FB. “Stress-based Finite Element Methods for Sea Ice Dynamics”. PAMM 18.1 (2018), e201800450.

Other publications

[1] FB, B. Kober, M. Moldenhauer, and G. Starke. “Equilibrated Stress Reconstruction and a Posteriori Error Estimation for Linear Elasticity”. CISM International Centre for Mechanical Sciences, Courses and Lectures 597 (2020), pp. 69–106.
[2] FB and D. Boffi. “The Prager-Synge theorem in reconstruction based a posteriori error estimation”. 75th
Mathematics of Computation, Contemporary Mathematics volume 754 (2019).
[3] S. FB Münzemaier. “Eiskalte Spannungen, eine Herausforderung an Mathematik und Mechanik”. Unikate (53) (2018).

Contact

Fleurianne Bertrand
University of Twente
Electrical Engineering, Mathematics and Computer Science
Campus building Zilverling 3004
Drienerlolaan 5
7522 NB Enschede

Post:
P.O. Box 217
7500 AE Enschede
The Netherlands

Designed with Mobirise ‌

Free Website Designing Software