#### Publications (peer-reviewed)

[1] L. Alzaben, FB, and D. Boffi. “On the Spectrum of an Operator Associated with Least-Squares Finite Elements for Linear Elasticity”. Computational Methods in Applied Mathematics (2022).

[2] FB and D. Boffi. “Least-squares formulations for eigenvalue problems associated with linear elasticity”.

Computers and Mathematics with Applications (2021).

[3] FB and D. Boffi. “First order least-squares formulations for eigenvalue problems”. IMA Journal of Nu- merical Analysis (2021).

[4] FB, D. Boffi, and G. G. de Diego. “Convergence analysis of the scaled boundary finite element method for the Laplace equation”. Advances in computational mathematics 47 (2021), pp. 17–34.

[5] FB, L. Demkowicz, and J. Gopalakrishnan. “Recent Advances in Least-Squares and Discontinuous Petrov Galerkin Finite Element Methods”. Computers and Mathematics with Applications 95 (2021).

[6] FB, A. Ern, and F. Radu. “Robust and reliable finite element methods in poromechanics”. Computers and Mathematics with Applications 91 (2021).

[7] FB, B. Kober, M. Moldenhauer, and G. Starke. “Weakly symmetric stress equilibration and a posteriori error estimation for linear elasticity”. Numerical Methods for Partial Differential Equations 37.4 (2021), pp. 2783–2802.

[8] FB and E. Pirch. “Least-squares finite element method for a meso-scale model of the spread of covid-19”.

Computation 9.2 (2021), pp. 1–22.

[9] FB and G. Starke. “A posteriori error estimates by weakly symmetric stress reconstruction for the Biot problem”. Computers and Mathematics with Applications 91 (2021), pp. 3–16.

[10] FB, D. Boffi, and R. Ma. “An adaptive finite element scheme for the Hellinger-Reissner elasticity mixed eigenvalue problem”. Computational Methods in Applied Mathematics 21 (2020), pp. 501–512.

[11] FB, D. Boffi, and R. Stenberg. “Asymptotically Exact A Posteriori Error Analysis for the Mixed Laplace Eigenvalue Problem”. Computational Methods in Applied Mathematics 20.2 (2020), pp. 215–225.

[12] FB, M. Moldenhauer, and G. Starke. “Weakly symmetric stress equilibration for hyperelastic material models”. GAMM Mitteilungen 43.2 (2020).

[13] FB, Z. Cai, and E. Park. “Least-Squares Methods for Elasticity and Stokes Equations with Weakly Imposed Symmetry”. Computational Methods in Applied Mathematics 19.3 (2019), pp. 415–430.

[14] FB, L. Demkowicz, J. Gopalakrishnan, and N. Heuer. “Recent Advances in Least-Squares and Discon- tinuous Petrov-Galerkin Finite Element Methods”. Computational Methods in Applied Mathematics 19.3 (2019).

[15] FB, M. Moldenhauer, and G. Starke. “A Posteriori Error Estimation for Planar Linear Elasticity by Stress Reconstruction”. Computational Methods in Applied Mathematics 19.3 (2019), pp. 663–679.

[16] FB. “First-order system least-squares for interface problems”. SIAM Journal on Numerical Analysis 56.3 (2018), pp. 1711–1730.

[17] FB and G. Starke. “Parametric Raviart-Thomas elements for mixed methods on domains with curved surfaces”. SIAM Journal on Numerical Analysis 54.6 (2016), pp. 3648–3667.

[18] FB, S. Münzenmaier, and G. Starke. “First-order system least squares on curved boundaries: Higher-order Raviart-Thomas elements”. SIAM Journal on Numerical Analysis 52.6 (2014), pp. 3165–3180.

[19] FB, S. Münzenmaier, and G. Starke. “First-order system least squares on curved boundaries: Lowest-order Raviart-Thomas elements”. SIAM Journal on Numerical Analysis 52.2 (2014), pp. 880–894.